
Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org /proc.conisar.org

A Process for Assessing Voting System Risk Using

Threat Trees

Alec Yasinsac
yasinsac@gmail.com

Harold Pardue

hpardue@usouthal.edu

School of Computer and Information Sciences
University of South Alabama

Mobile, Al 36688-0002, USA

Abstract

Security continues to be a critical issue in the safe operation of electronic voting machines. Risk
assessment is the process of determining if a particular voting system is at risk and what steps can
be taken to mitigate the risk. We propose an iterative risk assessment process using threat trees.
This process involves using a voting system risk taxonomy to categorize a threat, a schema to ex-
press logical hypothesis about a threat, generating a threat tree through functional decomposition,

expressing threat instance semantics as nodal properties with metrics, validating the threat in-
stance through independent representations, and finally pruning the tree for enhanced usability
and understandability. This process provides guidance to an analyst in using threat trees to con-
duct risk assessment of electronic voting systems. Because this process is based on abstract and
extendable structures, it facilitates the comparison and validation of independent risk evaluations.
Prospective voting system risk assessment metrics are provided.

Keywords: electronic voting systems, risk assessment, threat trees, taxonomy

1. INTRODUCTION

In their 2004 seminal work Kohono, Stubble-
field, Rubin and Wallach (2004) et al. closed

the book on the question of whether security
mechanisms were critical to safe operation of

electronic voting machines. Their analysis
showed that there were many critical vulnera-
bilities in a widely used voting system. That
work also precipitated a firestorm of vulnera-
bility analyses that further confirmed that ex-

isting electronic voting system security me-
chanisms were insufficient to ensure election
integrity.

This paper represents a first step in providing
guidance to analysts for systematically deter-
mining if particular voting systems are at risk

and to identify steps that can mitigate that
risk. There is significant work documented in
the literature regarding fault analysis (Clifton,

1999) and threat tree analysis (Schneier,
1999; Uppal, 2007; Evans, Heinbuch, Kyle, &

Porokowski, 2004), but our work details a spe-
cific approach for specifying voting system
threats that can facilitate risk analysis.

As information systems go, voting applications
are relatively simple. Their core function is to

capture the will of the eligible voters. There are
no complex algorithms; addition is simple
arithmetic and the numbers are relatively
small, as computer computations go.

On the other hand, voting systems have been
under attack for centuries, with malicious par-

mailto:yasinsac@gmail.com
mailto:hpardue@usouthal.edu

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org /proc.conisar.org

ties trying to influence, or control electoral
outcomes. An important challenge to conduct-
ing effective elections is to protect against
these manipulative threats.

In this paper, we introduce a process for iden-
tifying, categorizing, specifying, validating, and
pruning voting system threats. At the core of
this process is the threat tree.

A threat tree is a data structure for
representing the steps that an attacker would
take to exploit a vulnerability in order to ac-

complish malicious intent. While there has re-
cently been much discussion of voting system
threats and numerous voting system security

vulnerability assessments, (Black Box Voting,
2005); Yasinsac, Wagner, Bishop, Baker, Me-
deiros, Tyson, Shamos, & Burmester, 2007;

Gardner, Yasinsac, Bishop, Kohno, Hartley,
Kerski, Gainey, Walega, Hollander, & Gerke,
2007; California Secretary of State, 2007; Eps-
tein, 2007; & Alaska, 2008) we are unaware of
any systematic or formal effort to catalog,
specify, and validate voting system threat
trees.

Threat trees allow the analyst to (1) Descrip-
tively name nodes as threat goals and steps
(2) Graphically express logical relationships
between nodes and (3) Define attack goal and

step semantic properties as nodal attributes.
Collectively these three characteristics allow
the abstraction and precision that are neces-

sary to reason comparatively about fundamen-
tally different threats.

The remainder of this paper provides a detailed
description and discussion of the risk assess-
ment process followed by a brief summary.

2. VOTING SYSTEM RISK ASSESSMENT

PROCESS

The purpose of the voting system risk assess-
ment process is to provide guidance to an ana-
lyst in using threat trees to conduct risk analy-
sis of voting systems. The power of this

process derives from the use abstraction to
produce artifacts that categorize and illuminate

important voting system security issues while
facilitating a balance between detail and com-
plexity. These artifacts, because they are
based on generalizations that are flexible and
extensible yet explicit in their construction,
enable an analyst to compare and validate in-
dependent evaluations of risk. In other words,

these generalizations provide a common struc-

ture upon which to express individual percep-
tions, metrics, and analyses.

The threat tree generation process consists of
six iterative steps (see Figure 1). The first step

is to identify the threat as a high level attack
goal. In the second step, the analyst rigorously
defines the high level goal by assigning rele-
vant parameters from the voting system attack
taxonomy, creating new taxonomy parameters
where necessary. This level of detail provides
the foundation for the refinement step that

follows.

Figure 1. Risk Assessment Process.

In the fundamental step of the process, threat
tree generation, the analyst conducts function-
al decomposition, recursively expanding each

node into its requisite tasks. The recursive

functional decomposition continues until the
threat is refined sufficiently to conduct the ne-
cessary analysis. The result of this step is a
threat tree.

With the threat tree defined, each node is as-
signed attributes that capture properties that

are relevant to the analyst. These attributes
may be metrics, data points that allow analysts
to compute metrics, or simply observations
that provide the analyst a point of reference
for their analytical processes. They differ from
the taxonomy parameters in that while tax-
onomy parameters are generic threat proper-

ties that allow threat categorization, these

attributes are specific to the analyst's risk as-
sessment goals.

In the fifth step, the analyst iterates the first
four steps to validate and enhance the threat
tree. Each of the first four steps increases spe-
cificity, adding detail to the threat processes

and properties.

In the final step, the analyst prunes the threat
tree through abstraction leaving a threat tree

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org /proc.conisar.org

that is well understood and whose threat in-
stances can be comparatively analyzed.

The remainder of this section contains a de-
tailed description of each step in using the vot-

ing system risk assessment process.

2.1. IDENTIFY THE THREAT

The first step is to identify the high level
threat. The analyst may derive high level
threats through literature searches, brains-
torming, personal experience, newspaper ar-
ticles, etc. To be most useful, the identified

threat's impact must be tangible and measura-
ble. For example, the threat: "Remove a ballot

from a ballot box" is concrete while "Change an
election result" is inherently ambiguous.

2.2. APPLY THE TAXONOMY

The second step of the process requires the

analyst to define the high-level threat in ab-
stract yet precise terms. In order for these de-
finitions to be useful in making independent
comparisons and analysis, threats must be ca-
tegorized according to a common structure.
We offer a voting system threat taxonomy for
this purpose. Our extensible voting system risk

taxonomy can capture important properties of
voting system vulnerability and those that may
seek to create corresponding exploits. This

taxonomy employs a hierarchical structure
based on attribute n-tuples , where the lower
levels comprehensively describe the properties
of the parent.

2.2.1. TAXONOMY CLASSIFICATION

Taxonomy fundamentally classifies the target
group. That is, it provides commonality among
group members in a way that can facilitate
understanding and application. For example,
our proposed taxonomy provides a mechanism

for analysts to more precisely capture the
threats that they are expected to analyze. This
abstraction may be realized by searching, for
example, against attribute wild cards, i.e. all
attacks that accomplish wholesale impact, or

all attacks that involve rogue poll workers.

These abstractions may allow elections officials

to devise procedures that can systematically
mitigate the defined threats. For example, pre-
venting voters from accessing removable me-
dia eliminates the class of attacks that pairs
the following:

<Role(Voter), AttackVector(RemovableMedia)>

Similarly, if the voting system does not include
commercial off the shelf software, then all at-
tacks associated with the attribute <Soft-
ware(COTS)> are eliminated.

Finally, the taxonomy can allow the analyst to
identify and syntactically prohibit conflicting
attributes. For example, it may not be possible
to conduct a DoS attack after the voting period
ends. We term these “constraints” in the tax-
onomy and represent them as predicate pairs,
e.g.:

<Objective(DoS), Phase(AfterVotingPeriod)>

One challenge of modeling any process or is-

sue is to decide what level of detail is opti-
mum. Excessive detail can unnecessarily com-
plicate the model, while too little detail can
limit its usefulness. Our voting system threat

taxonomy’s present form is easily extensible.
As threat attributes emerge, they may be add-
ed to the tree depth or items of less interest
may be removed. Moreover, the model can be
automated to prompt manual entry guided by
the taxonomy’s syntax.

The content of the threat taxonomy is based

on an extensive review of the extant literature
and the experience and expertise of the au-
thors. The taxonomy was constructed in a top-
down process where each logical structure

block was decomposed into non-overlapping
sub-block structures.

We provide our voting system threat taxonomy

as Appendix A.

2.2.2. SCHEMA

The voting system risk taxonomy enables the
analyst to consistently classify threats through
a common syntax. However, the usefulness of
the resulting artifacts will be limited if 1) the

analyst does not have a means of consistently
expressing the logical hypothesis engendered
by the definition of an attack and 2) a consis-
tent means of expressing terms contained in
those hypothesis. A schema serves both needs.

We generate voting system threat tree defini-
tions and schema by creating logical hypothe-

sis regarding prospective voting system at-
tacks and we capture that hypothesis as n-
tuple expressions. For example, we posit, as
definition, that the only two overarching voting
system attack goals are to either alter or en-
sure a contest result or to negatively impact
voter confidence. We capture that hypothesis

as follows:

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org /proc.conisar.org

VSAttack = <AlterContestDecision, Un-
dermineVoterConfidence>

We similarly posit that there are only four ways
that an attacker can alter a contest decision,

given as:

AlterContestDecision = <AddVotes, Dele-
teVotes, FlipVotes, AlterCount>

Further, votes are either physical or electronic,
so:

DeleteVotes= <DeleteAcceptedBallotsPhys-
ical, DeleteAcceptedBallotsElectronic>

Finally, we propose the following hypothesis

regarding any attacker's ability to delete an
accepted physical ballot, stated as a schema:

schema: DeleteAcceptedBallotsPhysi-
cal.[Phase].[Control] = <GainPrivateAc-
cessToABPs.

RemoveABPsFromControlledCustody,

MoveABPsToPrivateSpace>

This schema stands as a template or skeleton
for any voting system attack that involves de-
leting physical ballots.

The definitions and schema above reveal the
pseudo-formal language approach that we

adopt. Our conventions include:

• Use short phrases coupled as long
words, with the first letter of each word
in caps

• Only abbreviate well known terms or
phrases

• Establish a data dictionary of node

names

We provide an extended set of definitions and
schema as Appendix B.

2.3. GENERATE THREAT TREE

Step three involves the recursive functional
decomposition of a threat into a collection of

goals and steps necessary to carry out a
threat. The recursive functional decomposition
continues until the threat is refined sufficiently
to conduct the necessary analysis. The result
of this step is a threat tree.

2.3.1. THREAT TREES

For our purposes, a threat defines the process

that one or more attackers might take to ac-
complish a malicious act in an election. The
"tree" is a powerful abstraction that graphically

captures relationships among nodes that are
hierarchically connected by directional edges,
while allowing analysts to express individual
node properties as nodal attributes. The tree

structure allows a systematic approach to
threat analysis, including facilitating abstrac-
tion and decomposition and allows analysts to
categorize goals and steps so they can focus
on those that are most critical.

For threat trees to be most useful, node names
must capture the node's core function, whether

the node is a goal or a step. Short, succinct
names allow the analyst to recognize the col-
lective meaning of the tree based on node

type, name, and connectivity.

2.3.2. THREAT TREE COMPONENTS

In order to leverage tree structures to

represent threat processes, we define voting
system threat trees so that their graphical
properties capture important process relation-
ship properties. We accomplish this by estab-
lishing the three node types of AND, OR, and
TERMINAL . Subordination reflects specification
through functional decomposition, so nodes

higher in the tree are abstractions of subordi-
nate nodes. All nodes that are immediately
subordinate to an AND node must be carried
out in order to meet higher level goals, while

OR node subordinates reflect alternate means
to accomplish an intended function. TERMINAL
nodes have no subordinates, thus reflect the

primitive operations (i.e. steps) that accom-
plish the modeled threat, while AND and OR
nodes reflect intermediate attack goals. Figure
2 illustrates a generic threat tree composed of
AND [A, D], OR [B, I], and TERMINAL [C, E, F,
G, H, J, K] nodes.

Figure 2. Generic Voting System Threat Tree.

A tree represents many threat instances, or
attacks, as a combination of TERMINAL nodes

that satisfy the logical requirements of the
tree. For example, in order to realize threat A,
an attacker would have to carry out goals B, C

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org /proc.conisar.org

and D. Accomplishing E, F, or G would accom-
plish B, while H and J or K would be needed to
accomplish D. Thus, <E, C, H, K> is one attack
represented in Figure 1, as is <G, C, H, K>.

There are four other TERMINAL node (step)
combinations (threat instances) that realize
threat A.

We can identify several properties of the threat
instances captured in this tree without knowing
any of the nodes' semantic properties. We
know for example that:

• The tree depth is four and its breadth
is seven

• This tree represents exactly six distinct
threat instances

• Each threat instance requires four
steps (i.e. four TERMINAL nodes)

• Nodes C and H are necessarily steps in
every threat instance

These are computations that can be applied to
all tree structures and all other routine tree
algorithms and provability properties similarly
apply to these trees. Thus, we know that split-
ting a TERMINAL node into an OR node doubles

the number of represented distinct attack in-
stances. If the split is an AND node, it adds
one step to each attack instance that includes

the replaced node. The practical importance of
these properties and computations will be evi-
denced in the validation of threat tree metrics.

We also know that canonical limitations that

apply to tree structures also apply to our vot-
ing system threat tree, most importantly that
their size expands rapidly relative to their
breadth and depth. In our approach, tree
depth is controlled by the level of detail neces-
sary to describe the goal or activity

represented in the node. These decisions are
made by the analyst. For example, if a particu-
lar threat may involve the task of "Picking a
lock", one analyst may encode that task as a
TERMINAL node, while another may encode it

as an AND node with the subordinate
TERMINAL nodes of "Acquire necessary skill

and knowledge" AND "Attain Necessary
Access" AND "Acquire necessary tools" AND
"Pick the lock". The latter approach adds one
level of depth to its branch.

Note that we intentionally avoid temporal no-
tions of step or goal sequencing in the tree's
graphical representation. If sequencing is im-

portant to a specific analysis, temporal depen-
dencies may be expressed as nodal properties.

2.4. ASSIGN NODAL PROPERTIES

At this stage in the process, the focus shifts

from the syntax of generic threat categoriza-
tion to the semantics of the primitive opera-
tions (steps) of a threat in the context of a
specific risk assessment. The analyst must de-
fine a threat instance for an attack (a realiza-
tion of a threat) and assign attributes specific
to the threat instance. The two attributes re-

quired by our process are likelihood and im-
pact. Likelihood is the probability that an at-
tack will be realized and impact measures the

consequences of an attack. Both likelihood and
impact are expressed and measured as quanti-
fiable metrics.

2.4.1. THREAT INSTANCE

The unit of evaluation for voting system threat
trees is a threat instance, or equivalently, an
attack, thus an attack is the realization of a
threat. We choose to focus on primitive opera-
tions (steps) because steps can be associated
with a metric. For example, an analyst can es-

timate how much or how little of some re-
source is required to carry out a given set of
steps. A goal represents an attacker's purpose
or objective. As such, it is more difficult to as-

sign quantifiable metrics to a purpose or objec-
tive than it is to a concrete activity or se-
quence of steps.

Metrics are important because they allow the
analyst to compare and validate independent
evaluations. This allows the analyst to reason
comparatively about fundamentally different
threats to voting systems. However, it is not
always possible or feasible to provide direct

evaluations of all possible sets of primitive op-
erations or steps in a threat tree because of
the potential for state space explosion.

We use goal nodes to abstract multiple sets of
steps into a single logical unit of evaluation

and thus mitigate this problem. Abstraction
can reduce tree depth and make evaluation

tractable. For example, in Figure 2, if we un-
derstood the properties of node I sufficiently to
collapse it into a TERMINAL node, thus elimi-
nating nodes J and K, it would reduce the
number of threat instances by half (from six to
three). Thus, it may make sense to decompose
goals in order to reason about them, but where

that understanding is sufficiently detailed, to

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org /proc.conisar.org

evaluate the tree at a higher abstraction level
to reduce the evaluation state space.

2.4.2. THREAT INSTANCE METRICS

Threat tree nodes may have many, sometimes

seemingly contradictory, properties that dictate
or influence a goal or step's occurrence
LIKELIHOOD or its potential IMPACT. These
are, of course, the two parameters for assess-
ing voting system risk. Voting systems in the
United States are highly complex. Consequent-
ly, risk LIKELIHOOD and IMPACT are varied

and difficult to capture and express. It is not
uncommon for two highly qualified election
experts to disagree vehemently regarding the

voting system risk.

We highlight some voting system threat node
attributes that capture a perspective of each of

these properties in this section.

2.4.2.1. LIKELIHOOD METRICS

We may measure LIKELIHOOD and IMPACT as
a continuous variable on a 0 to 1 scale. For the
former, 0 (as the lower LIKELIHOOD extreme)
would indicate that the event will not (or can-
not) occur, while 1 (at the upper extreme)

means that the event is certain to occur. For
the latter, 0 would reflect no impact while a
catastrophic result would represent the oppo-

site extreme impact. Alternatively, a simple
three step discrete metric of high, medium,
and low could also represent LIKELIHOOD
and/or IMPACT.

The only absolute in estimating risk likelihood
is that there are no absolutes. Issues of rela-
tivity, temporality, uncertainty, and other qua-
lifications render even the most intuitively ac-
curate assumptions invalid, or worse yet,
counterproductive. The best that we can hope

for is to leverage heuristics to find metrics that
incorporate best practice experience and offer
analysts a chance at estimating comparative
risk. We offer a few such prospective voting
system risk assessment metrics below.

Cost. The resource commitment required to
carry out a voting system attack always

bounds the prospective attacker's options.
Money, labor, time, and equipment are canoni-
cal resources that are represented in a cost
metric.

Necessary expertise. We may expect that a
requirement for specialized knowledge or skill
diminishes the likelihood of an attack occur-

ring. The obvious likelihood limitation is that

specialized expertise injects is to reduce the
pool of potential attackers or increases the
time and resources that an attacker needs to
carry out the attack. It also likely indicates that

there is an advanced sophistication, and a re-
sulting elevated complexity, in the prospective
attack.

Detectability. Detection can enable preven-
tion of many types of voting system attacks. It
can also allow officials to punish perpetrators
after the fact and can allow correction of dam-

age caused by a voting system attack.

We use the term "detectability" to capture the
notion of how difficult or likely it is that an at-

tack will be detected. We posit generally that
attacks, events, and actions that are more like-
ly to be detected are less likely to be at-

tempted and that they are less likely to
achieve maximum impact than those that are
more difficult to detect.

2.4.2.2. IMPACT METRICS

Generically, we think of threat IMPACT as the
magnitude or degree of damage that will, or is
expected to, occur as a result of a realized

threat. In practice, IMPACT is context exclusive
to the extent that the same voting system
threat may have a catastrophic impact in one
environment, but be essentially benign in a

different environment. Assignment of the
IMPACT metric is a major and important task
of the analyst and requires significant subject

matter expertise.

The two primary overarching goals of voting
system attacks are either to impact election
integrity or to influence public's perception
about the election. Thus, we partition IMPACT
metrics according to these two aspects and

address IMPACT as the magnitude of the effect
on voting system integrity or public perception.

2.4.2.3. INTEGRITY IMPACT METRICS

Voting system integrity attacks are what we
think of when we discuss election fraud, that

is, integrity attacks maliciously influence a con-
test result in an election. This encompasses

canonical election fraud issues, such as ballot
stuffing.

Voting system integrity attack impact ranges
from deleting one legal vote (or equivalently,
injecting one illegal vote) with no impact on
any contest selection, to controlling the se-
lected candidate or issue decision in all con-

tests. Voting system integrity issues are either

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org /proc.conisar.org

related to vote counting (process where each
voter selection is added to the total, one by
one) or aggregation (where subtotals are com-
bined to reflect the cumulative result). The fol-

lowing metrics are illustrative (as opposed to
comprehensive) and represent issues that are
relevant to risk assessment.

Without knowing a contest result a priori, an
attack waged during the voting period has the
best chance to be decisive if it can effect a
large volume of votes . Such attacks are simi-

lar in many ways to wholesale purchasing tac-
tics and the term "wholesale vote fraud" has
become part of the election integrity vernacu-

lar. Wholesale attacks optimize effort-to-effect
ratio, or more mathematically, retail attacks
are linear in terms of the effort-to-effect ratio,

while wholesale attacks are geometric (or ex-
ponential) in effort-to-effect ratio.

Knowing the magnitude of change necessary to
control an electoral decision can be important
to an attacker, allowing a small number of
votes to be decisive. We have recently seen
two federal elections (Minnesota Senate 2008

election and New York's 2009 special election
for their 20th Congressional district) decided
by only a few hundred votes. Each of these
contests was vulnerable to post voting period
attacks where a relatively small malicious

change could be decisive.

2.4.2.4. PUBLIC PERCEPTION IMPACT

METRICS

For a malicious party that desires to negatively
influence election-related public perception,
the prospective damage ranges from generat-
ing isolated incidents of misunderstanding to
wrongfully creating widespread belief that one

or more electoral decisions were influenced by
error or malice. While election integrity attacks
against voting systems predominantly involve
data and processes that are integral to con-
ducting an election, perception issues are un-
iformly driven through mass information dis-

semination media that is separate from the

voting system. The voting system responsibili-
ty in this process is to be able to provide
strong, accurate information about election
activity. Thus, attacks on public perception are
either voting system independent, or involve
modifying data reported to public dissemina-
tion media, as reflected in the following illustr-

ative metrics.

Elections officials uniformly rely on validation
mechanisms both to ensure election integrity

and to reassure the public of election accuracy.
Virtually all validation mechanisms employ
some type of redundancy, so attackers may
attack either the primary electoral product or

the validation data in order to create a nega-
tive perception (Yasinsac & Bishop, 2008). For
example, ballot accounting procedures meas-
ure the number of ballots issued against the
counted. A public perception attack may target
the records of the number of ballots issued so
that validation will suggest that there were

more voters than ballots. The greater the dis-
parity, the greater the potential to create neg-
ative public perception.

2.4.3. THREAT INSTANCE STOPPING
FUNCTION

A challenge to any system based on functional

decomposition is how to fashion a stopping
function. That is, it can be difficult to identify
the best or most effective abstraction level to
ensure that the decomposition process does
not reach a point of diminishing returns.

In our case, decomposition stops when the
analyst can assign values to the nodal

attributes with sufficient precision to accom-
plish the necessary global computations. For
example, if our metric is cost, the analyst must
decompose the task to the level that the cost

of each step is clear and justifiably assigned.
Justification may be based on the skill of the
analyst or upon some predefined threshold,

but the degree of precision is always dictated
by the metric's context.

Cumulative analysis must then begin at the
TERMINAL nodes that comprise each threat
instance, which is our unit of evaluation. To
illustrate, we compute the cost (C) of instance

(i) of threat (a) as (C(a, i)), which is the sum
of the costs of the steps required to carry out
threat instance (a, i). For example. if <E, C, H,
K> is instance 1 of threat A, as shown in Fig-
ure 1 on page 5 above, we compute:

C(A,1) = C(E) + C(C) + C(H) + C(K)

Thus, the fundamental voting system threat

tree unit of evaluation is horizontal. That is,
metrics are assigned at the TERMINAL nodes
and those values are accumulated by threat
instance, which reflects the tree's greatest
specificity level and the level where the metric
is assigned.

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org /proc.conisar.org

2.5. VALIDATE THREAT TREE

Since there are no well known metrics, metric
validation is essential to the voting system risk
assessment process. One way to approach va-

lidation is through comparing independent re-
presentations. With voting system threat trees,
if metrics have suitable computational proper-
ties, we can use redundancy by comparing ex-
pert assessment against computed values.

To accomplish this validation, an analyst would
employ a five stage analysis.

1. Select a metric that that can be as-
signed based on expert opinion

2. Create an algorithm for computing a
parent node's metric based on the child
metric values8.

3. Apply expert metric evaluation rules to

every node in the tree

4. Compute the metric value for each goal
node and

5. For non-terminal nodes, compare the
value assigned in Step 3 to the value
that is vertically computed from its
subordinate nodes in Step 4.

Figure 3. Simple, Generic Threat Tree.

To illustrate, consider the simple [hypothetical]
threat tree in Figure 3 with the nodes:

A: Threaten voting equipment

B: Create malware

C: Install the malware

D: Design attack

E: Gain necessary knowledge

F: Determine sleepover location

G: Gain access to sleepover location at an
appropriate time.

We now conduct the five stage analysis:

1. Select cost metric C

2. Compute the cost of a parent as the
sum of the cost of the children

3. For instructional purposes, assume that

the analyst opinion review assigns the
cost of each node to be:

(1) C(A) = 75, C(B) = 10, C(C) = 100,
C(D) = 5, C(E) = 5, C(F) = 50, C(G) =
100

4. We compute the cost of the non-
terminal nodes is:

(2) C(A) = 160, C(B) = 10, C(C) = 150

5. Comparison of evaluations (3) and (4)
reveals an inconsistency between the
expert analysis and computed analysis
at the highest level, which would not
be surprising. It also reveals an incon-

sistency between the expert evaluation
at the intermediate level for node C,
suggesting reanalysis of assigned val-
ues for nodes F and G, or consideration
of re-examining node C's decomposi-
tion.

2.6. PRUNE THREAT TREE

The goal of pruning the threat tree is to strike
a balance between abstraction and detail. The

tree must have sufficient detail to be useful
and understandable by the analyst. However,
too much detail creates a model that is unne-
cessarily complex. Complexity creates exces-
sive cognitive load for the analyst (reducing

understandability) while potentially make
quantitative analysis of the tree’s metrics in-
tractable (reducing usefulness).

For example, in the simplified threat tree de-
picted in Figure 2, assume that step E (Gain
necessary knowledge) was originally decom-

posed into two additional OR steps: “H: Inter-
view insider” OR “I: Review software compo-
nents”. Perhaps the analyst constructing the

threat tree, after validating the tree’s metrics,
determined that considering whether the at-
tacker interviewed a vendor employee OR ob-
tained a copy of a software component for pri-

vate review was extraneous to understanding
the likelihood and impact of the attack. There-
fore, to reduce the complexity of the tree,
make the tree more understandable and usa-
ble, these two steps were pruned from the
threat tree.

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org /proc.conisar.org

3. SUMMARY

In this paper, we propose a voting system risk
assessment process that leverages three cha-
racteristics of threat trees: the ability to (1)

Descriptively name nodes as threat goals and
steps (2) Graphically express logical relation-
ships between nodes and (3) Define attack
goal and step semantic properties as nodal
attributes. Collectively these three characteris-
tics allow the abstraction and precision that are
necessary to reason comparatively about fun-

damentally different threats.

The provision of a voting system risk taxonomy
and schema facilitates the comparison and va-

lidation of independent risk evaluations. That
is, because the taxonomy provides a common
syntax for categorizing threats and the schema

provides a means of expressing logical hypo-
thesis in consistent terms, the risk assessment
of independent analysts can be compared in a
logical and quantifiable manner. Further, be-
cause this process is based on abstract, ex-
tendable and common structures, it can be
effective for facilitating group risk assessment.

Rather than comparing independent risk evalu-
ations after the fact, analysts can work collec-
tively through each phase of the process.

Future research should include a vetting or

validation of the schema and taxonomy by vot-
ing systems domain experts.

4. ACKNOWLEDGEMENT

This work was supported in part by the Elec-
tion Assistance Commission under grant EAC-
RDV08-R-001.

5. REFERENCES

Alaska, (2008) Election Security Project, Divi-
sion of Elections, January 18, 2008. Re-

trieved on June 2010 from
http://www.elections.alaska.gov/election_s
ecurity.php.

Black Box Voting, (2005) The Black Box Re-
port, SECURITY ALERT: Critical Security Is-
sues with Diebold Optical Scan Design. Re-
trieved June 2010 from

http://www.blackboxvoting.org/BBVreport.
pdf.

Brennan Center (2006) The Machinery of De-
mocracy: Protecting Elections in an Elec-
tronic World, Brennan Center Task Force
on Voting System Security, Lawrence Nor-
den, Chair.

California Secretary of State, (2007) UC Final
Reports for the Top-to-Bottom Review (Ju-
ly-Aug. 2007). Retrieved on June 2010
from

http://www.sos.ca.gov/elections/elections_
vsr.htm.

Clifton, E. (1999) Fault Tree Analysis - A Histo-
ry. Proceedings of the 17th International
Systems Safety Conference.

Epstein, J. (2007) Improving Kentucky’s Elec-
tronic Voting System Certifications. Letter

to Kentucky Attorney General, September
27, 2007. Retrieved on June 2010 from
http://ag.ky.gov/NR/rdonlyres/1B3F7428-

0728-4E83-AADB-
51343C13FA29/0/votingexpertletter.pdf.

Evans, S., Heinbuch, D., Kyle, E., & Prokowski,

J. (2004) Risk-based Systems Security En-
gineering: Stopping attacks with intention,
IEEE Security & Privacy 2(6) 59-62.

Gardner, R., Yasinsac, A., Bishop, M., Kohno,
T., Hartley, Z., Kerski, J., Gainey, D., Wa-
lega, R., Hollander, E., & Gerke, M. (2007)
Software Review and Security Analysis of

the Diebold Voting Machine Software”, Fi-
nal Report For the Florida Department of
State, July 27, 2007. Retrieved on June
2010 from

http://election.dos.state.fl.us/pdf/SAITrepo
rt.pdf.

Kohno, T., Stubblefield, A., Rubin, A., & Wal-

lach, D. (2004) Analysis of an Electronic
Voting System. IEEE Symposium on Secu-
rity and Privacy, May 9-12, 27-40.

Schneier, B. (1999) Attack Trees. Dr. Dobb's
Journal, December, 24(12).

Uppal, V. (2007) The Importance of Threat

Modeling, IRM Research White Paper. Re-
trieved June 2010 from
http://www.irmplc.com/downloads/whitepa
pers/Threat_Modelling.pdf

Yasinsac, A, Wagner, D., Bishop, M., Baker,
T., Medeiros, D., Tyson, G., Shamos, M., &
Burmester, M. (2007) Software Review and

Security Analysis of the ES&S iVotronic
8.0.1.2 Voting Machine Firmware, Final
Report, Security and Assurance in Informa-
tion Technology Laboratory, Florida State
University, February 23. Retrieved on June
2010 from
http://election.dos.state.fl.us/pdf/FinalAud

RepSAIT.pdf.

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org /proc.conisar.org

Yasinsac A. & Bishop, M. (2008) The Dynamics
of Counting and Recounting Votes, IEEE
Security and Privacy Magazine, 6(3) 22-29.

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org /proc.conisar.org

Appendix A. VOTING SYSTEM THREAT TAXONOMY

VSRisk = <Attack, Impact, Likelihood>

Impact = <Magnitude, ContestBreadth, NumberOfContests, Persistence>

Magnitude = <Retail, Wholesale, CloseRace>

ContestBreadth = <Federal, State, Local>

NumberOfContests = <SingleContest, MultipleArbitraryContests,

MultipleContestsOfGivenType>

Persistence = <SingleElection, MultipleCycles, Perpetual>

Likelihood = <Low, VeryLow, UnMeasurable, UnImaginable>

Attack = <VS, Command, VSRiskTo, Environment, Protocol, MaliciousIntruder+>

VS = <PCOS, CCOS, VBM, VBP, DRE, PBHC, IV, BMD>

Command = <Adjustable, Precision>

Adjustable = <ChangeOnDemand, LimitedChange, FireAndForget>

Precision = <Candidate, Contest, Party>

VSRiskTo = <ElectionAccuracy, VoteAttribution, VoterConfidence>

ElectionAccuracy = <VoteError, AccumulationError>

VoteAttribution = <VoteBuying, VoteSelling, VoterCoersion>

Environment = <Vulnerability, Phase>

Vulnerability = <Software, Hardware>

Software = <VendorFirmware, COTS, ElectionDefinition>

ElectionDefinition = <BallotDef, ConfigItems>

Phase = <BeforePollsOpen, DuringVoting, AfterPollsClose>

Protocol = <Objective+, AttackVector+, Tree>

Objective = <ChangeCount, DoS, VoteAttribution, DiscreditCount>

ChangeCount = <BallotStuffing, BallotDeletion, VoteFlipping>

VoteAttributionPurpose = <VoteBuying, VoteSelling, VoterCoersion,

GeneralIrritation>

DiscreditCount = <CountAuditMismatch, PublicAnomaly>

AttackVector = <VoterInput, SupervisorEntryDevice, RemovableMedia,

Network, VendorKey>

MaliciousIntruder = <Role, Skills, Resources>

Role = <Voter, PollWorker, Auditor, ElectionsOfficial, OfficeAdmin>

ElectionsOfficial = <Permanent, Temp>

Permanent = <County, State, Vendor>

Temp = <CountyOffice, Precinct>

Skills = <HighTech, TechFamiliar, SpecificSkills, TechNovice>

Conference on Information Systems Applied Research 2010 CONISAR Proceedings
Nashville Tennessee, USA v3 n1505

©2010 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org /proc.conisar.org

Appendix B. VOTING SYSTEM THREAT TREE SCHEMA

VSAttack = <AlterContestDecision, UndermineVoterConfidence>

AlterContestDecision = <AddVotes, DeleteVotes, FlipVotes, AlterCount>

UndermineVoterConfidence = <AlterAuditData, AlterContestTotals, DenialOfService, Crea-
teOperationalProblems>

DeleteVotes = <DeleteAcceptedBallotsPhysical, DeleteAcceptedBallotsElectronic>

AddVotes = <StuffPhysicalBallotBox, CreateBallotImages>

schema: DeleteAcceptedBallotsPhysical.[Phase].[Control] =

GainPrivateAccessToABPs

RemoveABPsFromControlledCustody

MoveABPsToPrivateSpace

DeleteAcceptedBallotsPhysical.[Phase:AVP].[Control:none] =

GainPrivateAccessToABPs

PollWorkerAutomatic or ElectionsOfficialAutomatic or TriggerPollingPlaceFireAlarm

RemoveABPsFromControlledCustody

StealBallotBox or RemoveBallotsFromBox

ConcealContraband

MoveABPsToPrivateSpace

DeleteAcceptedBallotsPhysical.[Phase:AVP].[Control:AcceptedBallotCoC] =

GainPrivateAccessToABPs,

PollWorkerAutomatic or ElectionsOfficialAutomatic or TriggerPollingPlaceFireAlarm,

RemoveABPsFromControlledCustody(Constraint(RiskCoCDetection)),

MoveABPToPrivateSpace

Schema: DeleteAcceptedBallotsElectronic.[Phase].[Control].[HackVector]

Phase = <BVP, DVP, AVP, DR>

HackVector = <Malware, SupervisorMode, BadData, NetHack, RemovableMediaHack>

Control = <CommonControl, EControl, PControl>

CommonControl = <RandomAudit, PollWatchers, TwoPersonIntergrity>

EControl = <L&STest, EquipCoC, ParallelTesting, HashCodeTest>

PControl = <VotableBallotCoC, AcceptedBallotCoC, BallotAccounting, BallotWater-
marking>

DeleteAcceptedBallotsElectronic.[Phase:Any].[Control:none].[HackVector:Malware] =

CreateMalware, InstallMalware

DeleteAcceptedBallotsElectronic.[Phase:DVP].[Control:none].[HackVector:Malware] =

CreateMalware(BVP, DVP), InstallMalware(BVP, DVP)

DeleteAcceptedBallotsElectronic.[Phase:DVP].[Control:L&ATest].[HackVector:Malware] =

CreateMalware, InstallMalware(Constraint(DefeatL&A or InstallAfterL&A))

file://uncwcsbapp/edsigPapers/revised/Control.htm
file://uncwcsbapp/edsigPapers/revised/CoC.htm

