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Abstract  
 
Textbook coverage of algorithm performance emphasizes patterns of growth in expected and worst 
case execution times, relative to the size of the problem. Variability in execution times for a given 

problem size is usually ignored. In this research study, our primary focus is on the empirical 
distribution of execution times for a given algorithm and problem size. We examine CPU times for Java 
implementations of four sorting algorithms: selection sort, insertion sort, bubble sort, and quicksort. 
We measure variation in running times for these sorting algorithms. We show how the sort time 
distributions change as the problem size increases. With our methodology, we compare the relative 
stability of performance for the different sorting algorithms. 
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1. INTRODUCTION 

 
The performance of algorithms is addressed at 
different levels throughout the computing 
curriculum. In introductory programming 
courses, informal comparisons of alternative 
algorithms are presented without a rigorous 
theoretical framework (Lewis and Loftus, 2011; 

Liang, 2012). 
 

In Data Structures textbooks (Koffman & 

Wolfgang, 2010; Lafore, 2003), the emphasis is 
on how to implement algorithms to support data 
structures of varying complexity, such as stacks, 
priority queues, binary search trees, and 
weighted graphs. A casual introduction to "Big-
Oh" notation is included to relate problem size to 
execution time for various types of algorithms. 
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In Analysis of Algorithms textbooks (Cormen, 
Leiserson, Rivest, & Stein, 2009), the discussion 
of algorithm performance places greater 
emphasis on mathematical reasoning. A formal 

examination of algorithm efficiency based on 
resources required (primarily CPU time) looks at 
best case, worst case, and average case 
situations.  
 
Most of the discussion centers on worst case 
analysis because the mathematical arguments 

are simpler. Order-of-growth is defined to ignore 
constants and lower order terms, so average 
case results are often proportional to the worst 
case. Worst case examples provide an upper 

bound on the execution time for an algorithm. 
 

Sedgewick & Wayne (2011) present a 
mathematical analysis of algorithms, and then 
relate their mathematical models to empirical 
results obtained from algorithm run times on a 
computer. They give several algorithms for 
finding three numbers (from a large input file) 
that sum to zero. They ran each algorithm once 

for each input file, assuming that the only source 
of variation was the actual data. However, in our 
research we experienced situations where 
repeated execution of the same algorithm on the 
same data resulted in different execution times. 
 
Some textbooks briefly mention that running 

times can vary for different inputs. However, 
they include no discussion of the nature of the 
distribution of execution times for random 
inputs. Variation includes not only dispersion 
(how spread out the scores are from a central 
value), but also skewness (how unbalanced the 

scores are at each end of the distribution).  
 
Variation can be of greater importance than 
averages when consistency/dependability of 
execution time is a major requirement. This is 
true in systems having strict time constraints on 
operations, such as manufacturing systems, 

real-time control systems, and embedded 
systems (Jones, 2009). 
 

Research Plan 
The primary objective of this research is to 
examine how algorithm execution time 
distributions depend on problem size, 

randomness of data, and other factors. We limit 
our study to sorting algorithms for arrays of 
integers. In the next section, we list potential 
sources of variation for execution times. We then 
describe our experimental design to control 
sources of variation beyond algorithm structure 

and problem size. Our results and conclusions 
are summarized later in the paper. 
 

2. SOURCES OF VARIATION 

 
There are many system features which can 
affect algorithm performance. In this research, 
we use CPU time as our primary measure of 
performance. A layered list of sources of 
variation in sort times is outlined below. 

1. Computer hardware components: (a) CPU 

clock speed, pipelines, number of  cores, 
internal caches, (b) memory architecture, 
amount of RAM, interleaved RAM, external 

caches. 

2. Operating system features: (a) process 
scheduling algorithms, multi-tasking, parallel 

processing, (b)  memory allocation algorithms, 
virtual  memory. 

3. For Java programs: (a). Java JIT compiler, 
(b)  Java run-time options, (c) Java run-time 
behavior, especially automatic  garbage 
collection. 

4. Application program: (a) choice of algorithm, 

and how it is implemented, (b)  size of problem, 
(c) amount of memory required by the 
algorithm, (d) data type and data source. 
 

Our main focus in this paper is on patterns of 
variation in execution times due to features in 
the application program. We limit our research 

to sorting algorithms, including selection sort, 
insertion sort, bubble sort, and quicksort. We 
examine a range of array sizes, and repeatedly 
fill the arrays with random integers. 
 
To minimize algorithm performance effects from 

the lower hardware and software layers, we ran 
all final results on a single computer. This 
computer had an Intel Core2 Duo CPU, Windows 
7 operating system, and Version 7 of the Java 
compiler and run-time. 
 
Unexpected Variation 

In our research environment, we assumed that 
algorithm execution times would depend almost 
entirely on: 
1. the sorting algorithm 
2. the size and data type of the array 
3. the randomness of the generated data 
 

Surprisingly, this assumption was not supported 
by our test data. Unexpected patterns of 
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variation in performance were encountered 
throughout our research study. 
 
For example, early in the exploratory phase of 

our study, we performed the selection sort 
algorithm 7 times on an array size of 100. For 
each sort operation, independent random values 
of type int were generated to fill the array. The 
execution times in nanoseconds (ns) for the sort 
module were: 
 
  113827 

  320489 

   16328 

   15394 

   14928 

   14928 

   14462 

 

A statistical summary of CPU times to sort these 
arrays is: 
 

  Minimum =  14462 

  Median  =  15394 

  Maximum = 320489 

 

  Mean    =  72908 

  Std dev = 115195 

 

Several patterns in this data can be noted: 

1. The maximum sort time is more than 20 

times larger than the median. This is due to the 
presence of outliers (large sort times) in the 
sample. 

2. The median sort time is only slightly larger 
than the minimum. 

3. The average sort time is much larger than 
the median, suggesting a positively-skewed 
distribution. 

4. The standard deviation of the sort times is 
larger than the mean. This measure of variation 
is greatly inflated by outliers. 
 

3. METHODOLOGY 
 

The above example containing outliers was not 
atypical in our study. Because of these 
unexpected patterns in execution time data, we 
developed a methodology for generating and 

analyzing performance data that is relatively 
immune to outlier effects. 
 
CPU time measurement does not provide an 
"exact" performance value for an algorithm.  
Karl Pearson theorized that measurements 

represent samplings from a probability 
distribution of values (Salsburg, 2001). For 
example, to answer the question of "how fast is 
a sprinter?", his/her running times in 100-meter 

dash events over a season provide a partial 
answer in the form of a distribution of sample 
values. 
 
For a given hardware/software environment, 
sorting algorithm, and array size, our 
methodology assumes that the distribution of 

execution times is a mixture of two components: 
(a) normal variation due to randomness of the 
data, and (b) other sources of variation that 
result in outliers.  

 
Our methodology attempts to extract the normal 

variation component from the combined 
distribution. This requires being able to detect 
possible outliers and remove them from the 
sample.  
 
Our sort time data often contained a relatively 
large number of outliers. Therefore, we did not 

perform statistical tests to detect individual 
outliers. Instead, we used two general 
approaches for removing outliers: 

1. Set limits on the perceived "normal" data, 
and trim off values outside these limits. In 
particular, we examine trimmed means and 

trimmed standard deviations.  

2. Use statistics such as the median that are 
less susceptible to outliers. 
 
Our performance analysis approach was 
developed first for the selection sort algorithm. 
Samples of execution times for selection sort 

were obtained for a range of array sizes starting 
with 100.   
 
Our Java data generation program, initially 
written for selection sort, performs the following 
steps: 

1. Input the array size (N) and number of 

algorithm repetitions (R). 

2. For each repetition: 
 a. fill the data array with random integers. 
 b. sort the array, and place the execution  
  time (collected using the Java System  
  nanoTime function) in a SortTime array. 

3. After all repetitions are completed, sort the 

execution times in the SortTime array. 
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4. Calculate various statistical summaries of 
the execution times. This part of the Java 
program was modified frequently throughout the 
study.  

 
As data were collected for the sorting algorithm, 
we evaluated how well different statistics 
summarized essential features of the sort time 
distributions. When the methodology began to 
provide consistent results for selection sort, we 
applied the methodology to the remaining 

sorting algorithms. 
 
Sample Case 
The following sample case demonstrates much 

of the process in developing our methodology. In 
this case, the array size is 100, and the number 

of repetitions is 1000. A frequency distribution of 
the 1000 sort times obtained from running our 
Java program once is shown below. 
 
 Table 1: Selection Sort Distribution. 
 Sort Time in nanoseconds (ns) 
 Size N = 100, Repetitions R = 1000 
 

SortTime Freq CumFreq Diff 

14461 36 36 --- 

14462 68 104 1 

14928 472 576 466 

14929 78 654 1 

15394 124 778 465 

15395 194 972 1 

15861 17 989 466 

15862 4 993 1 

16328 1 994 466 

17261 1 995 933 

19127 1 996 1866 

37320 1 997 18193 

108695 1 998 71375 

111028 1 999 2333 

113827 1 1000 2799 

 

Several unusual features appear in the above 
distribution: 

1. The sample of sort times contains many 
repeat values. Only 15 distinct values appear in 

the 1000 repetitions of the sorting algorithm. 

2. Among the smaller sort times, most appear 
in "pairs", differing only by 1 nanosecond. This is 
probably due to rounding, since the nanoTime 
function returns an integer. 

3. If we consider pairs differing by 1 as a single 

value, over 99% of the distribution is 
concentrated in 4 sort time pairs. 

4. Again considering pairs differing by 1 as a 
single value, the difference between consecutive 
pairs is between 466 and 467. We can interpret 
this difference as the resolution of the "clock 

tick" for our nanoTime clock. Oracle's Java 
documentation (Oracle, 2014) states that the 
System.nanoTime method "returns the current 
value of the most precise available system timer, 
in nanoseconds." Apparently, our recorded sort 
times are not accurate to 1 nanosecond. In tests 
on other computers, we observed that the clock 

increment is hardware specific. 

5. The three largest values--113827, 111028, 
and 108695--are clearly outliers. But are there 

other outliers? The distribution is slightly 
skewed, even without top three values. 

6. The median of the distribution is 14928, 

which is close to the minimum value. 
 
We now ask the most important question for our 
methodology. "What characteristics of the sort 
time distribution are relevant for describing 
patterns of variation?" We will be generating sort 
time distributions for different sorting algorithms 

and various array sizes. The patterns of variation 
we are trying to explain should be observable 
within each of these separate distributions. 
 
A related research question is: "What statistical 
measures best summarize the variation in sort 

time distributions, without being distorted by 

outliers?" Three characteristics of distributions 
are of particular interest: 

1. central tendency: Where is the "center" of 
the distribution? Outliers can distort the mean of 
the distribution, but not the median. 

2. dispersion: How widely spread are the 

values from the central value? For "normal" 
variation, dispersion should not be inflated by 
outliers. 

3. skewness: How "unbalanced" is the 
distribution on both sides of the central value? 
Skewness can be exaggerated by outliers. 
 

Central Tendency and Skewness 
Given a sorting algorithm and an array size, we 
want to estimate the center of the distribution of 
"normal" sort times. This distribution does not 
include outliers. Our main statistic is the 
trimmed mean.  
 

We must decide which scores to "trim" from the 
sample of sort times. We want to trim enough 
values so that the trimmed mean approaches 
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the median and is not influenced by extreme 
values. 
 
In Table 2, we present several trimmed mean 

candidates and compare them to the median. 
The data is from the sample of sort times 
described in Table 1. The untrimmed mean is 
based on the entire sample, including outliers. 
The 99/01 trimmed mean removes the largest 
and smallest 1% (approximately) of the sample 
before calculating the mean. Other trimmed 

means remove the top and bottom 5%, 10%, 
and 20% of the sample. The median can be 
interpreted as the mean obtained by removing 
the largest and smallest 50%, but leaving the 

middle score(s).  
 

Table 2: Selection Sort Trimmed Means. 
Size N = 100, Repetitions R = 1000 
 

Trim Percent Mean vs. Median 

Untrimmed 15367 439 

99/01 15048 120 

95/05 15053 125 

90/10 15053 125 

80/20 15099 171 

50/50 (Median) 14928 -0- 

 
Note that the median remains unchanged for all 
trimmed samples because we removed the same 

number of values from both ends of the sorted 

list of values. For this sample of data, removing 
the top and bottom 1% seems to be sufficient to 
remove the effect of outliers on the mean. 
 
Dispersion 

The main topic of interest in this research is 
patterns of variation in algorithm performance. 
The dispersion in the distribution of sample sort 
times provides a measure for performance 
variation. We want to determine the variation for 
the "normal" sort times, apart from outlier 
effects.  

 
The most common measure of variation for 
quantitative variables is the standard deviation. 

However, the standard deviation is very sensitive 
to outliers. 
 
As with trimmed means, we calculate standard 

deviations from trimmed samples, hopefully with 
outliers removed. Since we are not testing for 
individual outliers, we trim different percentages 
of larger and smaller values from the sample.  
 

Standard deviations, both untrimmed and 
trimmed, are presented in Table 3. The sample 
data is again from Table 1. 
 

Table 3: Trimmed Standard Deviations. 
Size N = 100, Repetitions R = 1000 
 

Trim Percent Std Devn 

Untrimmed 5318 

99/01 311 

95/05 273 

90/10 273 

80/20 225 

Quartile Deviation 233 

 

It is apparent that trimming the top 1% 

(containing the outliers) and bottom 1% leads to 
a substantial reduction in the standard deviation. 
Additional trimming has relatively little effect on 
the standard deviation in this case. 
 
The quartile deviation is included in Table 3 for 
comparison purposes. The interquartile range 

(IQR) is a well-known measure of the spread of 
scores in a distribution. It is defined to be 
difference between the third quartile Q3 (75th 
centile) and the first quartile Q1 (25th centile). 
The quartile deviation is half the interquartile 
range (IRQ/2). 
 

Higher Repetitions 

The data from Table 1 represents a sample of 
1000 sort times. In the early development of our 
methodology, we generated samples of this size 
for array sizes between 100 and 1000. We 
performed statistical analyses on data for these 

sample sizes. 
 
As we became more comfortable with our 
methodology, we increased the number of 
repetitions to 10000. Each time we ran our Java 
data generation program, we obtained a sorted 
array containing 10000 execution times. With 

larger samples, we got a clearer picture of the 
stability of our results. 
 

In Table 4, we present a frequency distribution 
for one sample of 10000 sort times, based on 
selection sort of arrays of size 100. This 
distribution of 10000 values is similar to the 

previous distribution of 1000 values.  
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 Table 4: Selection Sort Distribution. 
 Size N = 100, Repetitions R = 10000 
 

SortTime Freq CumFreq Diff 

* 13995 58 58 --- 

* 14461 2295 2353 466 

* 14928 5669 8222 467 

* 15394 1655 9877 466 

* 15861 84 9961 467 

other 38 9999 --- 

1866018 1 10000 --- 

 

 * Consecutive values combined 

  (e.g. 13995 -- 55, 13996 -- 3) 

 

1. The sample of sort times contains thousands 
of repeat values. 
 
2. The smaller sort times appear in "pairs" that  
differ by 1 nanosecond (shown with asterisks). 
The lowest five pairs comprise over 99% of the 

distribution. Perhaps we need a better "clock" 
than the one provided by Java's nanoTime 
method. 

3. The minimum value of 13995 is one clock 
tick below 14461, which was the minimum value 
in the smaller sample. The maximum value of 
1866018 is an order of magnitude larger than 

the earlier maximum of 113827. In our 
methodology, generating random data that 

include large sort times is not unusual. 

4. The median of this second distribution 
remains at 14928, which is again close to the 
minimum value. 

 

4. ANALYSIS OF DATA 
 
In this section, we analyze performance 
variation for four sorting algorithms: selection 
sort, insertion sort, bubble sort, and quicksort. 
For each algorithm, we examine six array sizes: 

200, 400, ... , 1200. Patterns of mean variation 
across array sizes for a given algorithm is 
comparable to order-of-growth models covered 
in algorithm textbooks. 

 
We extend our research to describe sort time 
distributions within each algorithm/array size 

combination.  We measured central tendency, 
dispersion, and skewness for these distributions. 
Each test case involved 10000 repetitions of one 
sorting algorithm for a single array size. 
 

Sort Time Central Tendency 
We measured central tendency with trimmed 
means and the median. Our early work with 
arrays of size 100 suggested that trimming the 

top and bottom 1% is sufficient to remove 
outliers. However, for larger array sizes, the 
amount of variation increases. We made a 
conservative decision to trim the top and bottom 
5% of the scores from each distribution. 
 
Trimmed means for all six array sizes for each 

sorting algorithm are listed in Table 5. All times 
are in nanoseconds. 
 

 Table 5: Sort Time Distribution - 

 Trimmed 95/05 Mean 
 

Size Select Insert Bubble Quick 

200 49979 21306 86374 14991 

400 177308 79163 313611 32643 

600 378867 173847 677236 51110 

800 654887 304813 1118399 70304 

1000 1004657 471508 1698413 89862 

1200 1427205 674708 2415186 109896 

 
Looking at each row separately, we see that the 
largest mean execution times are for bubble 
sort, followed by selection sort. Insertion sort 
are less than half the values for selection sort. 
Quicksort times are much smaller, especially for 
large array sizes. 

 
This computer generated data is consistent with 
the nature of each of these sorting algorithms. 
For random data, bubble sort performs a large 
number of comparisons and swaps, while 
insertion sort performs many comparisons and 
shifts. In selection sort, the number of 

comparison operations is almost constant, 
regardless of the values in the array. The 
insertion sort and bubble sort algorithms can 
terminate early, depending on how fully sorted 
the data are initially. Quicksort is fastest 
because of its recursive design. 

 
If we look down each column at the pattern of 
increasing mean execution times, the results 

follow traditional order-of-growth models. For 
selection sort, when the array size doubles (e.g. 
400 -> 800), the mean sort time is 
approximately four times larger (177308 -> 

654887). This supports an O(N
2
) order-of-

growth model. A similar pattern occurs for 
insertion sort and bubble sort. Quicksort displays 
a noticeably smaller growth rate. 
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We prepared a summary table containing 
untrimmed means, but do not include it in this 
paper. With sample sizes of 10000, removing the 
top and bottom 5% (presumably containing 

outliers) had relatively little effect on the means. 
The trimmed means are about 1% to 2% 
smaller than the untrimmed means. Correlations 
between trimmed and untrimmed means is 
above 0.999 for each algorithm. As we shall see, 
trimming has a much greater effect on measures 
of dispersion. 

 
We provide in Table 6 the medians for the sort 
time distributions for each algorithm/array size 
combination. 

 
 Table 6: Sort Time Distribution - 

 Median 
 

Size Select Insert Bubble Quick 

200 49916 21459 86302 14928 

400 177271 79305 313487 32655 

600 378801 173539 677355 51314 

800 654500 304627 1117730 70441 

1000 1004374 471169 1698052 90034 

1200 1426570 674566 2414594 110093 

 

When the medians are compared to the trimmed 
means, there are minor differences, but the 
pattern is almost identical. This suggests that 
the trimming has successfully removed outliers, 

and the trimmed distributions are less skewed. 
 
Sort Time Dispersion 
We remind the reader that the values in the 
tables are not absolute. They are the results of 
random sampling of an algorithm. With means, 
the results are relatively stable, even in the 

presence of a small number of outliers. 
 
The same claim cannot be made for measures of 
dispersion. Statistics such as the standard 
deviation and the range can be greatly distorted 
when even a few outliers are in the sample. Our 

main objective in this study is to characterize 
variation in sort time distributions. With 
judicious trimming, we can avoid the problem of 

having an unreasonable number of outliers. 
Even so, occasional bizarre values appeared in 
our data sets. 
 

The most common measure of dispersion for a 
distribution is the standard deviation. To 
illustrate how volatile standard deviations can be 
with outliers, in Table 7 we present untrimmed 
standard deviations using complete samples of 
10000 sort times. 

In this table, untrimmed standard deviations for 
selection sort range in value from 6182 to 
201238. Observe that increasing the array size 
does not always result in a larger standard 

deviation. The size of each standard deviation is 
heavily influenced by outliers. Similar irregular 
patterns occur for each sorting algorithm. 
 

 Table 7: Sort Time Distribution - 

 Untrimmed Standard Deviation 
 

Size Select Insert Bubble Quick 

200 6182 10747 30301 2088 

400 74580 39323 55776 3226 

600 62073 34151 37991 20779 

800 201238 104351 68866 36104 

1000 57680 73650 43354 52899 

1200 188333 32091 64344 24352 

 
In the next table, we show how volatile variation 
statistics can be "tamed" with the careful use of 
trimming. Table 8 lists trimmed standard 
deviations obtained by removing the 5% largest 

and 5% smallest values from the sample. We 
chose 5% limits to be consistent with the 
previous trimming of means. In practice, 5% 
trimming might not always be enough.  
 

 Table 8: Sort Time Distribution - 
 Trimmed 95/05 Standard Deviation 
 

Size Select Insert Bubble Quick 

200 558 761 1118 326 

400 1243 2127 2838 494 

600 1496 3782 3976 632 

800 1712 6091 5559 794 

1000 2141 8421 7520 955 

1200 2852 10123 10096 1155 

 

For the trimmed standard deviations in Table 8, 
the pattern in each column shows an increase in 
dispersion as the array size increases. These 

results are representative of what we usually 
obtained with 5% trimming. 
 
The variation patterns for the four sorting 

algorithms is instructive. The greatest rates of 
increase in dispersion are for insertion sort and 
bubble sort. The smallest rate of increase is for 

quicksort. 
 
Selection sort, as we showed in Table 5, has the 
second largest mean sort times. But the rate of 
increase in dispersion is less than for insertion 
and bubble sort. Why? We let the reader answer 
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that question. Quicksort has a lower rate of 
increase in dispersion than selection sort. 
 
Coefficient of Variation 

Another way of comparing dispersion among 
similar distributions is by measuring relative 
variation. In this case, we divide the trimmed 
standard deviation by the corresponding 
trimmed mean. The statistic is called the 
coefficient of variation. To make the value of the 
statistic easier to interpret, we multiplied it by 

100, so that we express the standard deviation 
as a percentage of the mean. 
 
Measures of relative variation for our sorting 

algorithms and array sizes are displayed in 
Figure 1. Both means and standard deviations 

are trimmed at the top and bottom 5% levels. 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 Figure 1: Sort Time Relative Variation - 
 95/05 Coefficient of Variation (%) 
 

Selection sort has the smallest values for the 
coefficient of variation, followed closely by 
bubble sort. The selection sort means are more 
than twice as large as the times for insertion 

sort, but selection sort standard deviations are 
smaller. The result is less relative variation for 
selection sort. 
 
Quicksort has smaller standard deviations and 

smaller means. The ratios fall in between the 
high and low values of the other algorithms. One 

interesting feature revealed by Figure 1 is that, 
for all four algorithms, the coefficient of variation 
decreases as the array size increases. Although 
the standard deviation increases for larger 
arrays, the mean increases at a faster rate. 
 

It is tempting to conjecture that the ratios 
approach a lower limit for very large arrays. 
That is a question for future research.  
 

In any case, the fact that the relative variation is 
small for large arrays might justify the emphasis 
on mean execution times in textbooks. Sort time 
variation could be viewed as less important for 
large arrays. 
 
Sort Time Skewness 

Throughout our research, we used the difference 
between the mean and median as a crude 
measure of skewness. One criteria for choosing 
a trim level for the sort time distributions was 

based on this difference being small. A 
comparison of the 95/05 trimmed means in 

Table 5 with the medians in Table 6 shows the 
closeness of each mean to the corresponding 
median. This indicates that the skewness in the 
trimmed distributions is relatively minor. 
 
Our decision for the recommended amount of 
trimming was guided more by its effect on the 

standard deviation. Trimming the top and 
bottom 1% would be satisfactory to remove the 
skewness effects due to outliers. However, 
standard deviations are more affected by 
outliers, so we chose to trim 5% from the top 
and bottom of samples. This  often led to a ten-
fold reduction in the sample standard deviation. 

 
Unexplained Variation 
In our research design, we generated separate 
execution time distributions for specific sorting 
algorithm and array size combinations. The 
variation within these distributions was assumed 

to consist of a "normal" component and outliers. 
 
We assumed that the normal component of 
variation would be due primarily to the 
randomness of the data. Measurement of this 
source of variation was not very accurate 
because of the granularity of the Java nanoTime 

clock. A clock increment of 466.5 nanoseconds is 
almost half of a microsecond. With the speed of 
the processor (GHZ), much of the effect of 

random data on algorithm performance is hidden 
within these 0.466 microsecond intervals. 
 
The most puzzling aspect of our performance 

measurement was the frequent appearance of 
outliers. Outliers can have multiple causes. In 
our study, the "chief suspect" is the Java 
runtime environment. This software performs 
various actions to improve the performance of a 
running program. The feature most relevant 
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seems to be Java's automatic garbage collection 
(Boyer, 2008; Wicht, 2011). 
 
At various points during the execution of a 

program, the Java runtime chooses to free 
memory that is currently unreferenced. 
Generally, this is considered a good thing. 
However, automatic garbage collection makes it 
difficult to benchmark program performance. 
 
The simple solution for running benchmark 

programs with Java would be to turn off Java's 
garbage collection feature. That is not an option. 
Our solution is to remove outliers from our 
sample. Garbage collection takes varying 

amounts of time. In our samples, the largest 
times were often 10 to 100 times larger than 

normal sample values. 
 

5. SUMMARY AND CONCLUSIONS 
 
The primary purpose of this study was to 
analyze variation in the performance of sorting 
algorithms written in Java. Most of the emphasis 

in algorithm textbooks is on average and worst 
case performance. We are more interested in the 
distribution of execution times when an 
algorithm is run multiple times. 
 
We designed a methodology to control 

hardware, operating system, and Java runtime 

effects. We wanted processing time variation to 
result primarily from the sorting algorithm 
selected, the size of the array, and the 
randomness of the data. We wrote a Java test 
program to repeatedly fill an array, sort it, and 
record and save the execution times. The 

execution time data was then used to calculate 
statistics that summarize the distribution in 
terms of central tendency, dispersion, and 
skewness. 
 
Our experiment was performed for four sorting 
algorithms: selection sort, insertion sort, bubble 

sort, and quicksort. For each algorithm, a range 
of array sizes were examined. A number of 

results were reported, including the following: 

1. Execution time distributions were discrete, 
with relatively few distinct values. This was 
primarily due to the limited resolution of the 
Java nanoTime function. 

2. Distributions were positively skewed and 
included a few very large outliers. As a result, 
samples had to be trimmed to remove outliers 
before calculating statistics.  

3. For all sorting algorithms, the mean sort 
time increased as the array size increased. This 
was expected. The differing observed rates of 
increase were consistent with well-known order-

of-growth models for the algorithms. 

4. For each sorting algorithm, the standard 
deviation of execution times increased with array 
size. The algorithms differed in the amount 
variation and the pattern of growth. These 
patterns can be explained in terms of the 
structure of each algorithm. 

5. For each algorithm, the standard deviation 
grew at a slower rate than the mean. This was 
demonstrated by a decreasing coefficient of 

variation as the array size grew larger. 
 
Three conclusions can be drawn from our 

results. First, sort time variation exists and may 
be an important factor in systems with real-time 
constraints. Second, sort time variation is less 
important for very large arrays because the 
amount of variation is small compared to the 
mean. Third, beware of outliers in the data, 
especially when using the Java runtime 

environment for benchmarks. 
 
Future Research 
A good research study generates more questions 
than it answers. That was true in this study. Our 
planned future research activities include:  

1. Extend our analysis of variation to other 

sorting algorithms, such as merge sort and shell 
sort. 

2. Use our methodology on algorithms written 
in other programming languages. An obvious 
next language is C++. One problem is that C++ 
provides different timer functions in different 

operating environments. 

3. Study the behavior of Java's nanoTime 
function in different hardware and software 
environments. The statement by Oracle that 
nanoTime provides the "most precise available 
system timer" is intriguing and suggests a 
number of practical questions for further 

research. 
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