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Abstract  

 

In a recent study, the authors evaluated five multi-criteria decision-making methods and have shown 
inconsistent results of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and 
fuzzy TOPSIS compared to Analytic Hierarchy Process (AHP), fuzzy AHP, and Preference Ranking 
Organization METHod for Enrichment Evaluations (PROMTHEE). Several studies evaluated different 

normalization techniques for TOPSIS and justified the use of vector normalization. However, this study 
shows that the vector normalization method used in TOPSIS and a local normalization method used in 
fuzzy TOPSIS to construct a normalized fuzzy decision matrix can lead to inconsistent ranking results of 

TOPSIS and fuzzy TOPSIS compared to AHP and PROMETHEE. Some improvements are suggested that 
result in identical ranking results among AHP, PROMETHEE, and TOPSIS. Similarly, the results of fuzzy 
TOPSIS can be improved by fixing its normalization step. 
 
Keywords: TOPSIS, fuzzy TOPSIS, vector normalization, reciprocal normalization, Multi-criteria 
decision-making methods. 

 
 

1. INTRODUCTION 
 
Multi-criteria decision-making (MCDM) methods 
are used to help decision-makers to evaluate and 
rank a finite number of alternatives with respect 

to multiple competing criteria. For instance, to 
buy a car, MCDM methods evaluate criteria such 
as quality, style, reliability, performance, and 
price of the available car models to choose the 
best compromise alternative car. Numerous 
MCDM methods have been invented, such as 
Analytic Hierarchy Process (AHP) (Saaty, 1980), 

Analytic Network Process (ANP) (Saaty, 1996), 
Technique for Order of Preference by Similarity to 
Ideal Solution (TOPSIS) (Hwang and Yoon, 

1981), Preference Ranking Organization METHod 
for Enrichment Evaluations (PROMETHEE) (Brans 
and Vincke, 1985), ELimination and Choice 
Expressing the Reality (ELECTREE) (Roy, 1991), 
and Viekriterijumsko Kompromisno Rangiranje 

(VIKOR) (Opricovic, 1998).  
 
Human judgment can be vague and imprecise; 
therefore, fuzzy multi-criteria decision-making 
methods (FMCDM) should be used to replace the 
exact values and handle vagueness and 
uncertainty. Fuzzy logic is first introduced by 

Zadeh (1965) to deal with uncertainties and 
imprecise inputs. Fuzzy AHP and fuzzy TOPSIS 
are the most and the second most widely used 
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fuzzy MCDM techniques from 1980 to 2014 

(Kahraman, Onar, and Oztaysi, 2015). 
 
Multi-criteria decision analysis methods have 

been widely used in many areas, including 
economics, education systems, environment, 
finance, politics, health care, and transportation 
(Shim, 1989). For instance, in the higher 
education industry, MCDM methods have been 
mostly used for resource allocation, followed by 
planning and evaluation (Mustafa and Goh, 

1996). Ding & Zeng (2015) used TOPSIS 
combined with information entropy weight (IEW), 
to investigate the performance of 68 Chinese 
universities belonging to the Ministry of Education 
(MOE) from 2002 to 2011. Badri and Abdulla 
(2004) used AHP to determine the performance 

of higher education faculty members in terms of 
research, teaching, and university and 
community service. In the Transportation field, 
Saaty (1995) showed five examples of using AHP 
in transportation and illustrated the use of AHP in 
choosing the best route to commute from Saaty’s 
home to the University of Pennsylvania. Yang 

(2010) presented an enhanced emergency 
routing method for fire forces based on Dijkstra’s 
algorithm and AHP. Bao, Ruan, Shen, Hermans, 
and Janssens (2012) incorporated fuzzy TOPSIS 
to evaluate the road safety performance of 21 
European countries. 
 

The authors previously presented a comparative 
study of five multi-criteria decision-making 

methods, namely AHP, Fuzzy AHP, TOPSIS, Fuzzy 
TOPSIS, and PROMETHEE through two real-world 
case studies (Sarraf & McGuire, 2020). AHP was 
chosen due to its simplicity, the ability to handle 

both qualitative and quantitative data, the ability 
to derive criteria weights, and above all it is the 
most widely used method in the literature.  
TOPSIS was chosen because it represents human 
rationale in judgement and tries to minimize the 
distance to the best solution and maximize the 
distance from the worst solution. PROMETHEE 

was chosen since it is based on pairwise 
comparison that comes naturally and it can give 
a full ranking of alternatives. Fuzzy AHP and fuzzy 
TOPSIS were chosen because they can handle 

vagueness and uncertainty, and it is the most and 
second most widely used fuzzy MCDM techniques. 
 

Sarraf and McGuire (2020) applied the multi-
criteria decision-making methods on five 
alternative paths from a given source to a given 
destination to rank them based on a user’s input. 
The selected criteria were travel time, travel 
distance, and safety level. The safety level of 

roads was calculated based on historical crash 
data on each path. The study showed that the 

ranking results of PROMETHEE fit well with the 

ranking results of AHP, and they both result in the 
best ranking. Fuzzy AHP also produced good 
ranking results. On the other hand, TOPSIS and 

fuzzy TOPSIS produced inconsistent and poor 
ranking results compared to AHP and 
PROMETHEE. Normalization is a crucial step of 
MCDM methods to transform the measurements 
in the matrix of alternatives into dimensionless 
and comparable values. The normalization step 
can have a direct effect on the results of decision-

making methods. In this research study, the 
inconsistent results of TOPSIS and fuzzy TOPSIS 
are investigated, and suggestions are made to 
improve these methods. 
 
This research paper is organized as follows. The 

literature review section presents some research 
studies evaluating the effects of different 
normalization methods on TOPSIS. Section 3 
presents details of TOPSIS. Section 4 presents 
details of Chen’s(2000) fuzzy TOPSIS. Section 5 
presents the initial results of the case studies. 
Section 6 presents the suggestions to improve the 

results of TOPSIS and fuzzy TOPSIS. Section 7 
presents the concluding remarks. 
 

2. LITERATURE REVIEW 
 
Different normalization methods may be used in 
multi-criteria decision-making techniques. There 

have been several studies evaluating the 
influence of normalization on the ranking results 

of MCDM methods, especially on TOPSIS. 
Although the normalization process scales the 
criteria values to be approximate of the same 
magnitude, different normalization methods may 

result in different solutions (Chatterjee & 
Chakraborty, 2014).  
 
Chakraborty and Yeh (2009) analyzed the effect 
of vector normalization and three linear scale 
transformations (max-min, max,  and sum) on 
TOPSIS. The results justified the use of the vector 

normalization procedure for TOPSIS. However, 
the study shows that as the problem size 
increases from 4 attributes and 4 alternatives to 
20 attributes and 20 alternatives, the ranking 

consistency of all four normalizations drops 
significantly. In addition, a diverse range of data 
(1-10, 1-100, 1-500, 1-1000, 1-2500, 1-5000, 1-

7500, 1-10000) for each criterion was chosen to 
analyze the ranking consistency for various data 
range (wide range, moderate range, and narrow 
range). The results are rated as best, good, 
average, and poor. Although the vector 
normalization method outperformed other 

normalization techniques over all data ranges,  
the sensitivity to weights of criteria revealed that 
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for the wide range category, none of the 

normalization methods could be rated as best 
method. For the wide range category, the vector 
normalization was rated as good, while the max-

min, max and sum normalization methods were 
rated poor, good, and average, respectively. 
 
Chatterjee and Chakraborty (2014) investigated 
the results of different normalization methods on 
the PROMETHEE, TOPSIS, and GRA techniques. 
For flexible manufacturing system selection, four 

different normalization methods, namely, vector 
normalization (VN), Weitendorf’s linear 
normalization (WLN), Jüttler’s-Körth’s 
normalization (JKN), and Non-linear 
normalization (NLN) were used. The authors 
presented the ranking performance for the three 

MCDM methods with respect to the four different 
normalization methods. Spearman’s rank 
correlation coefficient (rs) were calculated to 
determine the rank agreement between two sets 
of rankings. The Average rs value between these 
MCDM methods were also computed to determine 
the mean ranking agreement among themselves. 

The results clearly showed that PROMETHEE II 
with the highest mean rs value of 0.9167 is less 
affected by different normalization methods while 
TOPSIS with the least mean rs value of 0.5654 is 
the most sensitive MCDM method to the 
normalization methods. In addition, Vector 
normalization with the highest rs value of 0.9762 

is the most preferred method and JKN with the 
least rs value of 0.3333 is the least preferred 

normalization method. 
 
Vafaei et al. (2018) evaluated the results of six 
normalization methods, linear (max), linear 

(max-min), linear (sum), vector normalization, 
logarithmic normalization, and fuzzification on 
TOPSIS, and concluded that vector normalization 
is the best normalization technique for TOPSIS 
and logarithmic normalization technique is the 
worst one. Similarly, Celen (2014) evaluated the 
effects of vector normalization and three linear 

normalization methods (max-min, max, and sum) 
on TOPSIS and concluded that vector 
normalization, which is the default normalization 
procedure for TOPSIS, generated the most 

consistent results. 
 
Pavlicic (2001) analyzed the effects of simple 

linear and vector normalization techniques on the 
results of TOPSIS, ELECTRE, and Simple Additive 
Weight (SAW). The results of MADM methods 
when using vector normalization or simple 
normalization could depend on measurement 
units. Pavlicic suggested a call for reconsideration 

of the use of some normalization methods used in 
MCDM methods including vector normalization. 

Milani et al. (2005) studied the effect of eight 

normalization methods in TOPSIS while applied to 
gear material selection for a power transmission 
problem. They concluded that different 

normalization procedures generated rather 
different closeness coefficients. Based on the 
results, it was verified that linear optimization 
norms cannot affect the rank of alternatives 
significantly, while nonlinear norms may yield 
some deviations.  

 

3. TOPSIS 
TOPSIS (Technique for Order of Preference by 
Similarity to Ideal Solution) is a Multi-Criteria 
Decision Making Method that was first developed 
by Hwang and Yoon (1981). TOPSIS is based on 
an aggregation function to rank alternatives and 

to determine the best alternative among a finite 
set of alternatives. TOPSIS works based on 
minimization of Euclidean distance from the 
positive ideal solution and maximization of 
Euclidean distance from the negative ideal 
solution. The TOPSIS procedure is based on the 
following steps: 

 
Step 1: Given matrix A(x)mn Calculate the 
normalized decision matrix as shown in equation 
(1). This is the default vector normalization used 
in TOPSIS. 
 

𝑟𝑖𝑗(𝑥) =  
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 , 𝑖 = 1, … , 𝑚;   𝑗 = 1, … , 𝑛. 
(1) 

 
Step 2: Based on the weights of criteria, calculate 
the weighted normalized decision matrix as 
shown in equation (2). 

 
vij = wj rij ,  i = 1, …, m;  j = 1, …, n.  
 

(2) 

where wj is the weight of the jth criterion. 
 
Step 3: Determine the positive ideal and negative 

ideal solutions as shown in equation (3). 
 
A+ = {v1

+ , v2
+ ,  …, vn

+ } 
where vj

+ = {max(vij) if j ∈ B ; min(vij) if   

j ∈ C }  

 
A– = {v1

– , v2
– ,  …, vn

– } 
where vj

– = {min(vij)  if j ∈ B ; max(vij) if  

j ∈ C }  

 

(3) 

where B is associated with the benefit and C is 
associated with the cost criteria. 
 
Step 4: Based on equation (4), calculate the 
separation from positive ideal and negative ideal 
solutions for each alternative. 
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𝑆𝑖
+ =  √∑ (𝑣𝑖𝑗  −  𝑣𝑗

+)2𝑛
𝑗=1   , 𝑖 = 1, … , 𝑚  

𝑆𝑖
− =  √∑ (𝑣𝑖𝑗  −  𝑣𝑗

−)2𝑛
𝑗=1   , 𝑖 = 1, … , 𝑚  

(4) 

 
Step 5: Calculate the relative closeness to the 

ideal solution as shown in equation (5). 
 

𝐶𝑖
− =

𝑆𝑖
−

𝑆𝑖
+ + 𝑆𝑖

−     , 𝑖 = 1, … , 𝑚 (5) 

 
Finally, rank the alternatives based on Ci

–. 
 

4. FUZZY TOPSIS 

 
There are several fuzzy TOPSIS methods 
developed to address the vagueness of human 

judgment (Abo-Sinna & Abou-El-Enien, 2005; 
Chen & Hwang, 1992; Chen, 2000; Liang, 1999; 
Wang & Elhag, 2006; Wang & Lee, 2009). Sarraf 
and McGuire (2020) utilized Chen’s (2000) fuzzy 

TOPSIS method to rank the alternative paths. 
This fuzzy TOPSIS method is the most cited 
article in the TOPSIS application (Zyoud and 
Fuchs-Hanusch, 2017). In fuzzy TOPSIS, the 
rates of alternatives and the importance weight 
of each criterion are described by linguistic terms, 
which in turn they can be expressed in triangular 

fuzzy numbers. Next, a vertex method is defined 
to measure the distance between two triangular 
fuzzy numbers. The steps of Chen’s (2000) fuzzy 
TOPSIS are as follows. 
 

Step 1: The weight of criteria must be expressed 

in linguistic terms as shown in table 1. 
 

Linguistic terms 
Fuzzy triangular 

numbers 

Very Low (VL) (0, 0, 0.1) 

Low (L) (0, 0.1, 0.3) 

Medium Low (ML) (0.1, 0.3, 0.5) 

Medium (M) (0.3, 0.5, 0.7) 

Medium High (MH) (0.5, 0.7, 0.9) 

High (H) (0.7, 0.9, 1.0) 

Very High (VH) (0.9, 1.0, 1.0) 

Table 1. Weights of criteria in fuzzy TOPSIS 

 
Step 2: The linguistic ratings presented in table 
2 are adopted to rate the alternatives with respect 

to each criterion. 
 
Step 3: The linguistic terms are converted into 
triangular fuzzy numbers to construct the fuzzy 
decision matrix and the fuzzy weight of each 
criterion. 
 

Step 4: Construct normalized fuzzy decision 

matrix R as shown in equation (6). 
 

Linguistic terms 
Fuzzy triangular 

numbers 

Very Poor (VP) (0, 0, 1) 

Poor (P) (0, 1, 3) 

Medium Poor (MP) (1, 3, 5) 

Fair (F) (3, 5, 7) 

Medium Good (MG) (5, 7, 9) 

Good (G) (7, 9, 10) 

Very Good (VG) (9, 10, 10) 

Table 2. Linguistic ratings and associated fuzzy 

triangular numbers in fuzzy TOPSIS 
 

R = [rij]m×n 

𝑟𝑖𝑗 =  ( 
𝑎𝑖𝑗

𝑐𝑗
∗ ,

𝑏𝑖𝑗

𝑐𝑗
∗  ,

𝑐𝑖𝑗

𝑐𝑗
∗ ) , 𝑗 ∈ 𝐵; 

𝑟𝑖𝑗 =  ( 
𝑎𝑗

−

𝑐𝑖𝑗
,
𝑎𝑗

−

𝑏𝑖𝑗
 ,

𝑎𝑗
−

𝑎𝑖𝑗
) , 𝑗 ∈ 𝐶; 

𝑐𝑗
∗ =  𝑐𝑖𝑗𝑖    

𝑚𝑎𝑥   𝑖𝑓  𝑗 ∈ 𝐵 

𝑎𝑗
− =  𝑎𝑖𝑗𝑖    

𝑚𝑖𝑛   𝑖𝑓  𝑗 ∈ 𝐶 

 

(6) 

where B is associated with the benefit, and C is 
associated with the cost criteria. 
 
Step 5: Construct the weighted normalized fuzzy 

decision matrix V as shown in equation (7). 

 
V = [vij]m×n 

𝑣𝑖𝑗 =  𝑟𝑖𝑗  𝑤𝑗  

(7) 

 
Step 6: Construct fuzzy positive-ideal solution 
(A* ) and fuzzy negative-ideal solution (A–) as 
shown in equation (8). 
 

𝐴∗ = (𝑣1
∗, 𝑣2

∗, … , 𝑣𝑛
∗) 

𝐴− = (𝑣1
−, 𝑣2

−, … , 𝑣𝑛
−) 

(8) 

 

where 𝑣𝑗
∗ = (1,1,1) and 𝑣𝑗

− = (0,0,0),  j = 1, 2, …, n. 

 
Step 7: Calculate the distance of each alternative 
from A* and A– using equation (9). 

𝑑𝑖
∗ =  ∑ 𝑑(𝑣𝑖𝑗 , 𝑣𝑗

∗), 𝑖 = 1, 2, … , 𝑚.

𝑛

𝑗=1

 

 

𝑑𝑖
− =  ∑ 𝑑(𝑣𝑖𝑗 , 𝑣𝑗

−), 𝑖 = 1, 2, … , 𝑚.

𝑛

𝑗=1

 

(9) 

 
Where 

 𝑑(𝑚, 𝑛) =  √
1

3
[(𝑚1 − 𝑛1)2 + (𝑚2 − 𝑛2)2 +  (𝑚3 − 𝑛3)2] 
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Step 8: Based on equation (10), calculate the 

closeness coefficient to determine the ranking 
order of alternatives. 
 

𝐶𝐶𝑖 =  
𝑑𝑖

−

𝑑𝑖
∗ + 𝑑𝑖

−  , 𝑖 =  1, 2, … , 𝑚. (10) 

 
Step 9: Determine the ranking of alternatives 
according to the closeness coefficient. 
 

5. INITIAL RESULTS OF MCDM METHODS 
 
Figures 1 and 2 show five different paths from a 
source to a destination in Maryland with different 
travel times, travel distances, and safety levels. 
The safety level is calculated based on historical 
crash data on road segments. Road segments 

highlighted with blue color are considered safe, 
meaning that either there were no accidents on 
those road segments or there were a few 
accidents that can be ignored due to high traffic 
volume. Yellow indicates a medium level of 
safety, and red represents a high crash rate and 
high risk of an accident. The details of the safety 

level calculation are covered in (Sarraf & McGuire, 
2020). 
 

 

Figure 1. Shortest, fastest and safest paths from 
MD-97 (Src) to 1 Pooks Hill Road (Des) 
 

 

Figure 2. Shortest path variants 1 and 2 from MD-
97 (Src) to 1 Pooks Hill Road (Des) 
 
The matrix shown in figure 3 presents these five 

alternative paths, the safety level, the distance, 
and the travel time for each path. Lower numbers 

in the matrix indicate more favorable results. For 

instance, the lowest number for the time criterion 
means the fastest path. Similarly, the lowest 
number for distance represents the shortest path 

and the lowest number for safety level indicates 
the safest path. For instance, the fastest path 
(alternative B)  has a safety level of 115.99; this 
means this is an extremely high-risk path. The 
risk of driving on the fastest path (B) is 7.68 times 
more than driving on the shortest path (A). 
However, the fastest path is 1.58 times faster 

than the shortest path. 
 

Paths  Safety Distance Time  

Shortest (A)  15.1057 6.7356 508.0000  

Fastest (B)  115.9982 7.6063 320.0000  

Safest (C)  16.0389 8.2911 417.0000  

Path 4 (D)  23.2725 6.7786 352.0000  

Path 5 (E)  18.4128 6.9967 533.0000  

Figure 3. Five alternative paths and their 
properties (first case study) 

 
This matrix must be normalized before applying 
multi-criteria decision analysis to transform 
values into comparable values and to have the 

same range of values for each of the columns of 

the matrix. Except for TOPSIS and fuzzy TOPSIS 
that have their own normalization methods 
(equations (1) and (6)), for the remaining MCDM 
methods the normalization step is performed as 
follows: First, divide the elements of each column 
by the sum of the column as shown in equation 

(11). Next, the numbers must be changed in a 
way such that the higher number indicates a 
better choice; therefore, the multiplicative 
inverse of the elements is calculated as shown in 
equation (12), and then, the matrix is normalized 
again as shown in equation (13). 
 

𝑏𝑖𝑗 =  
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑚
𝑖=1

 (11) 

 

𝑐𝑖𝑗 =  
1

𝑏𝑖𝑗
 (12) 

 

𝑑𝑖𝑗 =  
𝑐𝑖𝑗

∑ 𝑐𝑖𝑗
𝑚
𝑖=1

 (13) 

 
Figure 4 illustrates the result of this 
transformation. In this matrix, higher numbers 
indicate more favorable results. 
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  Safety Distance Time  

Shortest 
(A) 

 0.2824 0.2149 0.1612  

Fastest (B)  0.0368 0.1903 0.2560  

Safest (C)  0.2659 0.1745 0.1964  

Path 4 (D)  0.1833 0.2135 0.2327  

Path 5 (E)  0.2316 0.2068 0.1537  

Figure 4. Final results of normalization for 
alternative paths (higher numbers indicate more 

favorable results). 

The weights of criteria as shown in figure 5 were 
derived based on a user’s input and the AHP 

method. The most influential factor for the user 
was the travel time (0.6434), followed by the 
safety level of the path (0.2828), and the least 
significant factor was the distance (0.0738). 
Similarly, as shown in figure 6, triangular fuzzy 
weights were obtained using fuzzy AHP and fed to 
fuzzy TOPSIS to determine the ranking of the 

paths. The detailed calculations for these weight 
calculations along with two other methods to 
derive fuzzy weights and feed them into fuzzy 
TOPSIS are presented in (Sarraf & McGuire, 
2020). 

 Safety Distance Time  

 
0.2828 0.0738 0.6434 

 

Figure 5. Vector of priorities (Criteria weights) 
obtained from AHP 

 

 Safety Distance Time  

 (0.2423, 
0.3692, 
0.5543) 

(0.1290, 
0.1692, 
0.2291) 

(0.3189, 
0.4615, 
0.6652) 

 

Figure 6. Triangular criteria weights obtained 

from fuzzy AHP 

 

Table 3 presents the ranking results of the 

decision analysis methods and the weight 
assigned to each alternative path. 
 

The matrix in figure 7 shows another example of 
alternative paths and the safety level, the 
distance, and the travel time for each alternative 
path. 

  Safety Distance Time  

Shortest (A)  181.7542 14.8009 715  

Fastest (B)  181.7542 14.8009 715  

Safest (C)  90.0118 18.1377 1009  

Path 4 (D)  133.2662 16.5245 790  

Path 5 (E)  236.8785 17.4077 797  

Figure 7. Five alternative paths and their 
properties (second case study) 

 
Figure 8 presents the transformed matrix. The 
shortest path and the fastest path are the same; 
therefore, the values in the first two rows of the 
matrix are identical. Path 5 (E) has the worst 
safety level, and its travel time is longer than 
alternatives A, B, and D. 

  Safety Distance Time  

Shortest (A)  0.1626 0.2192 0.2217  

Fastest (B)  0.1626 0.2192 0.2217  

Safest (C)  0.3283 0.1789 0.1571  

Path 4 (D)  0.2217 0.1963 0.2006  

Path 5 (E)  0.1248 0.1864 0.1989  

Figure 8. Final results of normalization for 
alternative paths in the second use case (higher 

numbers indicate more favorable results). 

 

Path AHP Fuzzy AHP TOPSIS Fuzzy TOPSIS PROMETHEE 

Shortest (A) 0.1994 (3) 0.2119 (3) 0.1962 (3) 0.1832 (2) 0.1999 (3) 

Fastest (B) 0.1891 (4) 0.1644 (5) 0.1128 (5) 0.1766 (4) 0.1973 (4) 

Safest (C) 0.2144 (2) 0.2255 (1) 0.2372 (2) 0.1831 (3) 0.2036 (2) 

Path 4 (D) 0.2173 (1) 0.2121 (2) 0.2691 (1) 0.2834 (1) 0.2043 (1) 

Path 5 (E) 0.1796 (5) 0.1863 (4) 0.1848 (4) 0.1736 (5) 0.1949 (5) 

Table 3. Comparison of Alternative Path Weights and Ranks Assigned in First Case Study. 
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Table 4 presents the results of the decision 
analysis methods and the weights assigned to 

each alternative path in the second use case. 
Based on the criteria weights obtained from the 
user and our analysis, path 5 (alternative E) must 
be considered as the last suggested path. The 
ranking results of AHP and PROMETHEE are 

considered as the best-ranking result in this case 
study. 
 
All the decision-making methods except Fuzzy 
TOPSIS considered path 5 as the last suggested 
path. In addition, TOPSIS considered the safest 
path (alternative C) as the third-best path, while 

AHP and PROMETHEE ranked the safest path as 
the best alternative. 
 

 

6. IMPROVING THE RESULTS OF TOPSIS 
AND FUZZY TOPSIS 

 
AHP and PROMETHEE produced the best ranking 
results in both of the case studies. In the second 
case study, the safest path is selected as the first 
alternative path by AHP, fuzzy AHP, and 
PRROMETHEE, while TOPSIS ranks it as the third 
alternative path and fuzzy TOPSIS ranks it as the 

fourth alternative path. Based on the results of 
the use cases, inconsistent results of TOPSIS and 
fuzzy TOPSIS were noticed. This section aims to 
improve the results of TOPSIS and fuzzy TOPSIS 
by presenting a few changes. 
 
In contrast with the literature that suggests 

vector normalization is among the most suitable 
methods for TOPSIS, we noticed that the 
evaluation results of TOPSIS in the case studies 
are affected by the vector normalization method 
that is presented in equation (1). Since the initial 
values of the safety level and time of the 

alternative paths can vary significantly, it is more 
suitable to use the normalization method 
presented in equations (11), (12), and (13).  
 

Table 5 presents the safety level of the first case 
study, which was presented in figure 3, along with 
the normalized data obtained from the TOPSIS 

method and the normalization method we 
employed. The table also includes the skewness 

of each dataset. Skewness is a measure to 
determine if the data is symmetrically distributed. 
A value of zero shows a perfectly symmetrical 
distribution. A positive value shows positive 
skewness and a negative value shows a negative 
skewness. 
 

 
Safety 
Level 

TOPSIS 
Normalization 

Our 
Normalization 

Path A 15.1057 0.1241 0.2824 

Path B 115.9982 0.9528 0.0368 

Path C 16.0389 0.1317 0.2659 

Path D 23.2725 0.1912 0.1833 

Path E 18.4128 0.1512 0.2316 

Skewness 1.32 1.32 -0.9 

Table 5. The skewness of Data in the First Case 
Study 
 
The skewness of the data can be the cause of the 
inconsistent ranking results of TOPSIS for the first 
case study. The initial data is positively skewed. 

Similarly, TOPSIS vector normalization results in 
identical skewness as the initial data. Osborne 

(2002) indicates that multiplicative inverse is one 
of the most commonly discussed methods to 
reduce skewness. Our normalization method 
employs multiplicative inverse; therefore, as 
show in table 5, it results in the skewness of -0.9. 

This normalization method improved the 
normality of the data and inversed the results; 
consequently, it is now negatively skewed and the 
skewness result is closer to zero. 
 

Path AHP Fuzzy AHP TOPSIS Fuzzy TOPSIS PROMETHEE 

Shortest (A) 0.2048 (3) 0.1970 (3) 0.2159 (2) 0.2389 (1) 0.2012 (3) 

Fastest (B) 0.2048 (3) 0.1970 (3) 0.2159 (2) 0.2389 (1) 0.2012 (3) 

Safest (C) 0.2071 (1) 0.2287 (1) 0.1772 (3) 0.1424 (4) 0.2018 (1) 

Path 4 (D) 0.2062 (2) 0.2094 (2) 0.2518 (1) 0.2327 (2) 0.2016 (2) 

Path 5 (E) 0.1770 (4) 0.1679 (4) 0.1394 (4) 0.1471 (3) 0.1943 (4) 

Table 4. Comparison of Alternative Path Weights and Ranks Assigned in First Case Study 
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Table 6 and Table 7 present the results and 

ranking of AHP, initial TOPSIS, and TOPSIS with 
reciprocal normalization method for the first and 
second case studies, respectively. Clearly, the 

normalization method had a huge impact on the 
results. The TOPSIS method with reciprocal 
normalization produced identical ranking results 
to AHP and PROMETHEE in both case studies. 
 

Path AHP TOPSIS 

TOPSIS- 
Reciprocal 
Normalizat

ion 

Shortest (A) 0.1994 (3) 0.1962 (3) 0.1912 (3) 

Fastest (B) 0.1891 (4) 0.1128 (5) 0.1745 (4) 

Safest (C) 0.2144  (2) 0.2372 (2) 0.2313 (2) 

Path 4 (D) 0.2173 (1) 0.2691 (1) 0.2416 (1) 

Path 5 (E) 0.1796 (5) 0.1848 (4) 0.1614 (5) 

Table 6. Results and Ranking of the First Case 
Study Using TOPSIS with Reciprocal 

Normalization 

 

Path AHP TOPSIS 

TOPSIS- 
Reciprocal 
Normalizat

ion 

Shortest 
/fastest (A/B) 

0.2048 (3) 0.2159 (2) 0.1989 (3) 

Safest (C) 0.2071 (1) 0.1772 (3) 0.2439 (1) 

Path 4 (D) 0.2062 (2) 0.2518 (1) 0.2289 (2) 

Path 5 (E) 0.177 (4) 0.1394 (4) 0.1295 (4) 

Table 7. Results and Ranking of the Second Case 
Study Using TOPSIS with Reciprocal 

Normalization 
 

In addition, the results of fuzzy TOPSIS can be 
improved. This requires the following two steps: 

To rate alternatives using the linguistic terms, 
first the difference of the lowest and the highest 
values for each individual column were 
calculated. Next, the range was divided into 
seven equal parts and the alternatives were rated 

based on the linguistic terms presented in Table 
2. However, this method isolates the results of 
each criterion. Thus, a good or bad result in one 
criterion cannot directly influence the results of 
other criteria. For instance, if the safety level of 

alternative A is very good (VG) compared to the 

other alternatives, and the time of alternative B 
is very good (VG) compared to other alternatives, 
we cannot find the ratio between very good safety 

level and very good travel time. The alternative 
path matrix is normalized; therefore, all the 
criteria, namely safety level, time, and distance 
are comparable. In order to fix this issue, it is 
necessary to calculate the difference of the global 
lowest and the global highest values among all 
the benefit criteria, and divide the range into 

seven equal parts and rate the alternatives based 
on the linguistic terms. A similar approach must 
be repeated for all the cost criteria. 
 
Figure 9 shows the linguistic terms assigned to 
the alternative results that were presented in 

figure 3 using local lowest and local highest 
values in each individual column. For instance, 
the lowest value in the distance column is 0.1745 
and the highest is 0.2149. By calculating the 
difference between these two values and dividing 
the range into seven equal parts, the linguistic 
terms were assigned. Figure 10 presents the 

modified rating of the alternatives in linguistic 
terms using the global lowest and global highest 
in the entire matrix. The global lowest value in 
the matrix is 0.0368 and the global highest value 
is 0.2824. Using the global difference, the 
alternatives are rated based on the linguistic 
terms. 

  Safety Distance Time  

Path A  VG VG VP  

Path B  VP MP VG  

Path C  VG VP MP  

Path D  MG VG G  

Path E  G G VP  

Figure 9. Alternative paths and their properties 

in linguistic terms using local lowest and highest 
values. 

 

  Safety Distance Time  

Path A  VG G F  

Path B  VP MG VG  

Path C  VG F MG  

Path D  MG G G  

Path E  G MG F  

Figure 10. Alternative paths and their properties 
in linguistic terms using global lowest and 

highest values. 
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The next step to improve the accuracy of fuzzy 

TOPSIS is changing its initial normalization step 
that is shown in equation (6) and shown again for 
convenience in equation (14). In this equation, cj

* 

is calculated for each individual benefit criterion; 
this is the maximum value of each benefit 
column. This needs to be changed to c* which is 
the global maximum c among a set of benefit 

criteria. Similarly, aj
− must be changed to a− which 

is the global minimum a among a set of cost 
criteria. Moreover, rij  must be calculated based 

on global c* and a−. Equation (15) presents the 
modified version of the normalized fuzzy decision 
matrix for fuzzy TOPSIS. 

 

R = [rij]m×n 

𝑟𝑖𝑗 =  ( 
𝑎𝑖𝑗

𝑐𝑗
∗ ,

𝑏𝑖𝑗

𝑐𝑗
∗  ,

𝑐𝑖𝑗

𝑐𝑗
∗ ) , 𝑗 ∈ 𝐵; 

𝑟𝑖𝑗 =  ( 
𝑎𝑗

−

𝑐𝑖𝑗
,
𝑎𝑗

−

𝑏𝑖𝑗
 ,

𝑎𝑗
−

𝑎𝑖𝑗
) , 𝑗 ∈ 𝐶; 

𝑐𝑗
∗ =  𝑐𝑖𝑗𝑖    

𝑚𝑎𝑥   𝑖𝑓  𝑗 ∈ 𝐵 

𝑎𝑗
− =  𝑎𝑖𝑗𝑖    

𝑚𝑖𝑛   𝑖𝑓  𝑗 ∈ 𝐶 

(14) 

 

R = [rij]m×n 

𝑟𝑖𝑗 =  ( 
𝑎𝑖𝑗

𝑐∗ ,
𝑏𝑖𝑗

𝑐∗  ,
𝑐𝑖𝑗

𝑐∗ ) , 𝑗 ∈ 𝐵; 

𝑟𝑖𝑗 =  ( 
𝑎−

𝑐𝑖𝑗
,
𝑎−

𝑏𝑖𝑗
 ,

𝑎−

𝑎𝑖𝑗
) , 𝑗 ∈ 𝐶; 

𝑐∗ =  𝑚𝑎𝑥 𝑐𝑖𝑗   𝑖𝑓  𝑗 ∈ 𝐵 

𝑎− =  𝑚𝑖𝑛 𝑎𝑖𝑗  𝑖𝑓  𝑗 ∈ 𝐶 

(15) 

 
Applying the aforementioned steps to fuzzy 
TOPSIS improves the results of fuzzy TOPSIS. 
Table 8 and Table 9 present the results and 
ranking of alternative paths using AHP and fuzzy 
TOPSIS for the first and the second case studies, 
respectively. The ranking result of improved fuzzy 

TOPSIS for the first case study is closer to the 
result of AHP. In the second case study, fuzzy 
TOPSIS initially produced the worst results. 
However, the improved fuzzy TOPSIS enhanced 
the ranking results of fuzzy TOPSIS significantly 

and now it is identical to the ranking of AHP. 

 
7. CONCLUSIONS 

 
Based on two real-world case studies and a 
comparison of five multi-criteria decision-making 
methods we realized AHP and PROMETHEE 
produce the best ranking results, whereas 

TOPSIS and fuzzy TOPSIS produce inconsistent 
results compared to other MCDM. After evaluating  

Path AHP Fuzzy TOPSIS 
Improved 

Fuzzy 

Shortest (A) 0.1994 (3) 0.1832 (2) 0.2060 (3) 

Fastest (B) 0.1891 (4) 0.1766 (4) 0.1591 (5) 

Safest (C) 0.2144  (2) 0.1831 (3) 0.2141 (2) 

Path 4 (D) 0.2173 (1) 0.2834 (1) 0.2261 (1) 

Path 5 (E) 0.1796 (5) 0.1736 (5) 0.1974 (4) 

Table 8. Results and Ranking of the First Case 

Study Using Improved Fuzzy TOPSIS 
 

Path AHP Fuzzy TOPSIS 
Improved 

Fuzzy 

Shortest 
(A) 

0.2048 (3) 0.2389 (1) 0.2097 (3) 

Fastest (B) 0.2048 (3) 0.2389 (1) 0.2097 (3) 

Safest (C) 0.2071 (1) 0.1424 (4) 0.2324 (1) 

Path 4 (D) 0.2062 (2) 0.2327 (2) 0.2184 (2) 

Path 5 (E) 0.1770 (4) 0.1471 (3) 0.1299 (4) 

Table 9. Results and Ranking of the Second Case 

Study Using Improved Fuzzy TOPSIS. 
 

TOPSIS and fuzzy TOPSIS, we concluded that the 
normalization methods are the source of the 
inconsistent results. Although multiple research 
studies suggested the use of vector normalization 
in TOPSIS, we concluded that the normalization 

method presented in this research study that is 
based on multiplicative inverse is more 
appropriate for our use cases. This normalization 
method resulted in producing identical ranking 
results to AHP in both case studies. 
 

Furthermore, the source of poor results in fuzzy 
TOPSIS is due to assigning linguistic terms to the 
values in each individual column and the 
normalization step that is performed individually 
for each column. We could improve the ranking 

results of fuzzy TOPSIS. This requires two steps: 
first finding the difference of the global lowest and 

highest values of all the benefit criteria and 
assigning the linguistic terms based on the 
difference that is divided into seven equal parts. 
Next, changing the normalization step to perform 
normalization based on all the columns of the 
same type, not individual columns. These 
changes significantly improved the results of 
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fuzzy TOPSIS since the result is now identical to 

the ranking results of AHP. 
 
A future work will be to gather the data and the 

ranking results of TOPSIS and fuzzy TOPSIS in 
the literature and apply the aforementioned 
changes and compare the new ranking results 
with the results already presented in the 
literature. We believe the changes presented in 
this research study are simple yet effective to 
improve the ranking results of TOPSIS and fuzzy 

TOPSIS. 
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